Laser Principals

Laser

- "Light Amplification by Stimulated Emission of Radiation"
- Every laser needs three components
 - Pump provides power
 - Gain Medium amplifies electromagnetic radiation
 - Resonator stores the coherent electromagnetic field

HeNe Gas Laser

- Special gas laser which uses electric current as a **pump** to excite the HeNe gas which is used as the **gain medium**
- Electrical current first excites Helium atoms from the ground state into the excited state and collide with ground Neon atoms which become excited
- Decay of Neon atoms from higher energy bands to lower, leads to the production of a photon of light at **632.8 nm**

Problem

• Although we have the three things a laser needs, why do we not see laser light from our setup?

Answer

- Laser cavity length (L) matters to create a resonating cavity
- Light is a wave that can interfere with itself when bouncing in the cavity and in order to get laser light, we need these waves to constructively interfere with each other
- This happens at cavity length only at exact multiple of half the wavelength in the cavity, creating standing wave **longitudinal modes (q)** in the cavity

q	L (cm)	Equation
1	0.00003164	 The equation for the cavity length in air is: L = q λ/2 We know the confined wavelength is: 632.8 nm We can then calculate all the possible cavity lengths for all longitudinal modes q must be an integral most times we must go to very large modes to be able to physically set the laser up
10	0.0003164	
100	0.003164	
1000	0.03164	
10000	0.3164	
100000	3.164	
1000000	31.64	